Other Blood Group Systems

Anna Burgos, MT(ASCP)SBB
Senior Immunohematologist

Laboratory of Immunohematology and Genomics

April 18, 2017
Introduction to Immunohematology

I. Blood Group Immunology/ Pre-transfusion Testing/ABO/Rh

II. Other Blood Group Systems

III. Antibody Identification I&II
Other Blood Group Systems: points to consider

• Most commonly encountered antigens and their respective antibodies

• Which antibodies are clinically significant?

• Impact on the Blood Bank
Blood Groups: Discovery and Elucidation

• 1900s-1950s: serology/family studies
• 1950-1980s: biochemical analysis
• Late 1980s: molecular genetics

• A blood group antigen is defined serologically by antibodies made by a human
• In order to be assigned a number by the ISBT Terminology Working Party the antigen must be shown to be inherited
Today: 36 blood group systems; 300+ antigens

Growth spurt thanks to new technologies
Some favorite “old” antigens (that were detected many years ago) have now become systems
RBC Membrane Components & 35 blood group systems

All 36 blood group genes have been cloned and sequenced

Figure adapted from: Blood Group Antigen FactsBook; 3rd ed
Reid, Lomas-Francis & Olsson
36 Blood group systems (001 through 036)
A blood group system consists of one or more antigens controlled at a single gene locus, or by two or more very closely linked homologous genes

Blood group collections: antigens are related serologically, biochemically or genetically, but do not fit the criteria required for system status (Cost, Er)

700 series: of low incidence antigens that are not part of a blood group system or collection; incidence of <1% in most population tested (e.g., Bi, Kg)

901 series: of high incidence antigens (> 90%) in most population tested that are not part of a blood group system or collection (e.g., MAM, AnWj)
ISBT Working Party on Terminology for Red Cell Surface Antigens

<table>
<thead>
<tr>
<th>Number</th>
<th>System name</th>
<th>ISBT gene name</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>ABO</td>
<td>ABO</td>
</tr>
<tr>
<td>002</td>
<td>MNS</td>
<td>MNS</td>
</tr>
<tr>
<td>003</td>
<td>P</td>
<td>P1</td>
</tr>
<tr>
<td>004</td>
<td>Rh</td>
<td>RHD, RHCE</td>
</tr>
<tr>
<td>005</td>
<td>Lutheran</td>
<td>LU</td>
</tr>
<tr>
<td>006</td>
<td>Kell</td>
<td>KEL</td>
</tr>
<tr>
<td>007</td>
<td>Lewis</td>
<td>LE</td>
</tr>
<tr>
<td>008</td>
<td>Duffy</td>
<td>FY</td>
</tr>
<tr>
<td>009</td>
<td>Kidd</td>
<td>JK</td>
</tr>
<tr>
<td>010</td>
<td>Diego</td>
<td>DI</td>
</tr>
<tr>
<td>011</td>
<td>Yt</td>
<td>ACHE</td>
</tr>
<tr>
<td>012</td>
<td>Xg</td>
<td>XG</td>
</tr>
<tr>
<td>013</td>
<td>Scianna</td>
<td>SC</td>
</tr>
<tr>
<td>014</td>
<td>Dombrock</td>
<td>DO</td>
</tr>
<tr>
<td>015</td>
<td>Colton</td>
<td>CO</td>
</tr>
<tr>
<td>016</td>
<td>Landsteiner-Wiener</td>
<td>LW</td>
</tr>
<tr>
<td>017</td>
<td>Chido/Rodgers</td>
<td>C4A, C4B</td>
</tr>
<tr>
<td>018</td>
<td>Hh</td>
<td>H</td>
</tr>
<tr>
<td>019</td>
<td>Kx</td>
<td>XK</td>
</tr>
<tr>
<td>020</td>
<td>Gerbich</td>
<td>GE</td>
</tr>
<tr>
<td>021</td>
<td>Cromer</td>
<td>CROM</td>
</tr>
<tr>
<td>022</td>
<td>Knops</td>
<td>KN</td>
</tr>
<tr>
<td>023</td>
<td>Indian</td>
<td>IN</td>
</tr>
<tr>
<td>024</td>
<td>Ok</td>
<td>OK</td>
</tr>
<tr>
<td>025</td>
<td>Raph</td>
<td>RAPH</td>
</tr>
<tr>
<td>026</td>
<td>JMH</td>
<td>JMH</td>
</tr>
<tr>
<td>027</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>028</td>
<td>GLOB</td>
<td>P</td>
</tr>
<tr>
<td>029</td>
<td>GILL</td>
<td>GIL</td>
</tr>
<tr>
<td>030</td>
<td>RHAG</td>
<td>RHAG</td>
</tr>
<tr>
<td>031</td>
<td>FORS</td>
<td>FORS</td>
</tr>
<tr>
<td>032</td>
<td>Jr</td>
<td>JR</td>
</tr>
<tr>
<td>033</td>
<td>Lan</td>
<td>LAN</td>
</tr>
</tbody>
</table>

Criteria for the establishment of new blood group systems:

For an antigen to form a new blood group system it must be:

- Defined by a human alloantibody
- Inherited character
- Gene encoding it must have been identified and sequenced
- Known chromosomal location
- Gene must be different from, and not a closely-linked homologue of, all other genes encoding antigens of existing blood group systems.

<table>
<thead>
<tr>
<th>Number</th>
<th>System name</th>
<th>ISBT gene name</th>
</tr>
</thead>
<tbody>
<tr>
<td>034</td>
<td>Vel</td>
<td>SMIM1</td>
</tr>
<tr>
<td>035</td>
<td>CD59</td>
<td>CD59</td>
</tr>
<tr>
<td>036</td>
<td>Augustine</td>
<td>ENT1</td>
</tr>
</tbody>
</table>
Blood group antigens that are sugars

• The antigens of the P1PK (formerly P) and Lewis systems are sugars that are produced by a series of reactions in which enzymes (glycosyltransferases) catalyze the transfer of sugar units to the carrier protein in the RBC membrane.

• A person’s DNA determines the type of enzyme and therefore, the immunodominant sugar (and antigen) on the RBCs.
Most blood systems are carried on proteins

- Single-pass proteins (e.g., Kell, MNS)
- Multi-pass proteins (e.g., Rh, Duffy)
- Glycosylphosphatidylinositol (GPI)-linked protein (e.g., Dombrock, Cromer)
Blood Group Systems and their Chromosomes

Note: # antigens reflect those identified as of 2009
Other Blood Group Systems: *Review of Key Features*

- **Distinguishing characteristics**
 - Structure/function/disease associations

- **Antigen Prevalence/ISBT number**

- **Antibodies**
 - Reactivity
 - Clinical significance
Points to consider for RBC transfusion

• Is the antibody identified clinically significant?

• What is the antigen prevalence in the donor population
 or
How difficult is it to find compatible blood for the patient?
“Other” blood group systems (BGS): Non-ABO/D

- **P1PK (formerly P)**
- **Lewis**
- **Other Rh antigens**
 - MNS
 - Kell
 - Duffy
 - Kidd

<table>
<thead>
<tr>
<th></th>
<th>Rh-hr</th>
<th>Kell</th>
<th>Kidd</th>
<th>Duffy</th>
<th>Lewis</th>
<th>MNSs</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell</td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>c</td>
<td>e</td>
<td>K</td>
<td>k</td>
</tr>
<tr>
<td>I</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td></td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The table above represents the various blood group systems and their associated antigens.
Blood Group Immunization: Most Common Specificities

- Rh
- Kell
- Duffy
- Kidd
- MNSs

Antibodies that occur without exposure to RBC antigens: ABH, Ii, Lewis, P1, M, N
Lewis blood group system

- Lewis antigens are not intrinsic to RBCs
- Carried glycolipids in the plasma that are adsorbed onto the RBC
- The Le gene (*FUT3*) produces a fucosyl-transferase that attaches L-fucose to the sub-terminal chain of the precursor chain to form the Le\(^a\) antigen
- The subsequent action of the enzyme encoded by the Se (secretor) gene (*FUT2*) attaches a fucose to the terminal chain to form Le\(^b\) antigen
- Le(a–b–) individuals make Lewis antibodies
Lewis blood group system (continuation)

• Antibodies are frequently found but are usually NOT clinically significant
• Rare examples of hemolytic anti-Lea and even rarer examples of anti-Leb have been found
• Mostly not necessary to type donor blood Lewis antigens prior to transfusion or crossmatching
 – Reactions obtained in the crossmatch provide a good index of transfusion safety
 – If agglutination and/or hemolysis are observed at 37\textdegree C or IAT, then the blood should not be given and antigen-negative blood should be used
P1PK Blood Group system (formerly P system)

- P1 antigen formed on cellular paragloboside with Type II chains
- Immunodominant sugar = D-galactose
- No L-fucose added to subterminal sugar
- P1-positive phenotype = P₁
- P1-negative phenotype = P₂
- Shares common precursor with P (globoside)
- Anti-P1 NOT clinically significant
- Anti-P1 is mostly IgM, it does not cross the placenta and has not been reported to cause HDFN
 - P1 antigen is poorly expressed on fetal cells
Rh blood group system

• The most polymorphic BGS in humans
 • 56 antigens to date and counting!
 • 2nd most important system after ABO
 • Antigens are highly immunogenic
 • Usually clinically significant: can cause transfusion reactions and HDFN

• Rh antibodies rarely, if ever, bind complement
 – RBC destruction is mediated almost exclusively via macrophages in the spleen
Single antigen prevalence (calculated)

- D 85% Caucasians, 93% Blacks, 99% Asians
 - Therefore HDFN due to anti-D very rare in Asian populations

- C 70% Caucasians, 27% Blacks, 93% Asians

- E 30% Caucasians, 22% Blacks, 39% Asians

- c 80% Caucasians, 96% Blacks, 47% Asians

- e 98% Caucasians, 98% Blacks, 96% Asians
MNS blood group system

• 48 antigens

• Carried on sialoglycoproteins:
 – glycophorin A (GPA) and glycophorin B (GPB)

• Encoded by 2 genes: GYP A, GYP B

 M or N; S or s antigens

• Inherited as a haplotype: MS, Ms, NS or Ns

• Disease associations
 – GPA is a pathogen receptor (E. coli; influenza virus)
 – GPA deficient RBCS are resistant to P. falciparum invasion
MNS Blood Group

- Many enzyme cleavage sites along both molecules; useful in antibody studies
- Multiple low incidence antigens caused by point mutations
- Various hybrid molecules define novel antigens

Null phenotypes:

- **En(a−)**: M−N−; cells lack GPA
- **U negative**: S−s−; cells lack GPB or have aberrant molecule [Uvar (S−s−U+W)]
- **Mk**: Cells lack both GPA and GPB
MNS antigens: carrier molecules

Amino Acids 1 to 19 are cleaved from the membrane-bound protein

M
Ser
Ser
Thr
Thr
Gly

N
Leu
Ser
Thr
Thr
Glu

‘N’
Leu
Ser
Thr
Thr
Glu

Met/Thr
48
S/s

U

N-linked sugar
O-linked sugar

Lipid Bilayer

Inside

Glycophorin A

Glycophorin B

20

72

131

20
MNS System: Phenotypes and Prevalence

<table>
<thead>
<tr>
<th>Reactions with Anti-M</th>
<th>Phenotype</th>
<th>Prevalence (%)</th>
<th>Whites</th>
<th>Blacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>M+N−</td>
<td></td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>+</td>
<td>M+N+</td>
<td></td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>0</td>
<td>M−N+</td>
<td></td>
<td>22</td>
<td>30</td>
</tr>
</tbody>
</table>

Adapted from AABB Technical Manual
Phenotypes and Prevalence in the MNS System

<table>
<thead>
<tr>
<th>Reactions with Anti-</th>
<th>Phenotype</th>
<th>Prevalence (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>s</td>
<td>U</td>
<td>Pheno-</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>+</td>
<td>type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S+s–U+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>S+s+U+</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>+</td>
<td>S–s+U+</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S–s–U–</td>
</tr>
</tbody>
</table>

Adapted from AABB Technical Manual
MNS Antibodies: anti-M

Anti-M

• IgG (cold reactive; many direct agglutinins) and IgM
 – React at 24°C (RT) or 4C; rarely also reactive by IAT
 – M antigen: large quantity (up to 1 million copies) on RBCs so that agglutination in saline test may occur even if the antibody is wholly IgG
 – Anti-M demonstrates dosage

• Generally not clinically significant
 – Rare examples have caused transfusion reactions or HDFN

• If reactivity is at 37°C the anti-M should be considered potentially significant
MNS antibodies: anti-N

Anti-N

• IgM and IgG (some direct agglutinins)
 – typically behave like weakly reactive cold agglutinins
 – Rarely reactive at IAT

- Usually considered clinically insignificant
 (although some powerful and potentially significant IgG examples have been observed)

• Antibodies showing dosage are rarely encountered

• Rare N–S–s–U– people make an antibody that reacts with N on GPA and GPB and may be clinically significant
MNS Antibodies: anti-S, -s, -U

Anti-S and anti-s

• Usually IgG; react by IAT but some anti-S and anti-s are IgM

• Anti-S may be “naturally-occurring” without known RBC stimulation

• RBC units for transfusion must be antigen negative and crossmatch compatible

Anti-U

• IgG; reacts by IAT; reacts with enzyme treated RBCs as U antigen is resistant to enzyme treatment

• May cause HDFN; can be difficult to manage be U–blood is rare
Proteolytic Enzymes

- Useful tools for investigating complex antibody problems
- Papain, ficin, bromelin
- Modify RBC membrane/remove negatively charged molecules
- Enzymes destroy M, N, S antigens
 - however, s antigen may or may not be denatured by enzyme treatment
Kell Blood Group System

• 35 antigens

• 6 antigens encountered most
 – K/k
 – Kpa/Kpb
 – Js a/Jsb

• Rare silent alleles encode K₀ (Kell-null) phenotype; no Kell antigens expressed

• McLeod phenotype (encoded by an X-linked gene, XK) has greatly weakened expression of Kell system antigens and is associated with structural and functional abnormalities of RBCs and leukocytes (if patient has CGD)
Kell Glycoprotein

- Member of Neprilysin (M13) family of zinc endopeptidases
- Kell cleaves big endothelin-3 to release ET-3, a potent vasoconstrictor
- Kell antigen expression greatly reduced when Kx protein (encoded by XK gene) is absent (McLeod phenotype)

Courtesy C. Lomas-Francis, modified
Kell System: Phenotypes and Prevalence

<table>
<thead>
<tr>
<th>Reactions with Anti-</th>
<th>Phenotype</th>
<th>Prevalence (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>K+k–</td>
<td>0.2</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>K+k+</td>
<td>8.8</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>K–k+</td>
<td>91</td>
</tr>
</tbody>
</table>

Adapted from AABB Technical Manual
Kell System: Phenotypes and Prevalence

<table>
<thead>
<tr>
<th>Reactions with Anti-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kp^a</td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Adapted from AABB Technical Manual
Kell System: Phenotypes and Prevalence

<table>
<thead>
<tr>
<th>Reactions with Anti-</th>
<th>Pheno-type</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Whites</td>
</tr>
<tr>
<td>Jsa</td>
<td>+ 0</td>
<td>Js(a+b−)</td>
</tr>
<tr>
<td>Jsa</td>
<td>+ +</td>
<td>Js(a+b+)</td>
</tr>
<tr>
<td></td>
<td>0 +</td>
<td>Js(a−b+)</td>
</tr>
</tbody>
</table>

Adapted from AABB Technical Manual
Kell Blood Group Antibodies

- IgG; react by IAT
- Always considered clinically significant
 - Cause severe HTRs and HDFN
 - Anemia of the fetus and newborn due to suppression of erythroid progenitor cells *in utero*
- Anti-K most common antibody (very potent immunogen, second only to D), other specificities are rare
- Some bacteria elicit production of IgM anti-K
HDFN due to Anti-D and to Anti-K

Anti-D

Anti-K

Hydropic

Hydropic and anemic

Pictures courtesy of Dr. Greg Denomme
Duffy Blood Group

- 5 antigens: Fy^a, Fy^b, Fy3, Fy5 and Fy6
- Most common are Fy^a and Fy^b
- The Duffy gene encodes a glycoprotein that is expressed in other tissues, including brain, kidney, spleen, heart and lung
- In Fy(a–b–) individuals, transcription in the bone marrow is prevented and Duffy protein is absent from the red cell
- Duffy protein is expressed normally in non-erythroid cells of these Fy(a–b–) persons
Molecular Basis of Duffy (Fya & Fyb) Antigens

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Nucleotide Variation</th>
<th>Amino acid Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fya</td>
<td>125th G</td>
<td>42nd Gly</td>
</tr>
<tr>
<td>Fyb</td>
<td>“” A</td>
<td>“” Asp</td>
</tr>
</tbody>
</table>
Duffy Blood Group: Fy(a–b–) phenotype

• Fy(a–b–) red cells resistant to *Plasmodium vivax* invasion

• Is extremely rare in Whites

• The prevalence among African American Blacks is 68% and approaches 100% in some areas of West Africa
Duffy System: Phenotypes and Prevalence

| Reactions with Anti- | Phenotype | Prevalence | |
|---------------------|----------------|------------|
| Fy^a | | | |
| + | Fy(a+b–) | 20 | 10|
| + | Fy(a+b+) | 48 | 3 |
| 0 | Fy(a−b+) | 32 | 20|
| 0 | Fy(a−b−) | 0 | 67|

Adapted from AABB Technical Manual
Duffy Blood Group Antibodies

• IgG; react by IAT; clinically significant

• Anti-Fya stronger and more common than anti-Fyb

• Anti-Fya and -Fyb are non-reactive with enzyme-treated cells

• Anti-Fy3, sometimes made by Fy(a–b–) people
 – The Fy3 antigen is resistant to enzyme treatment
Kidd Blood Group System

- ISBT symbol JK, ISBT number 009
- 3 Antigens Jk\(^a\)/Jk\(^b\) Jk3
- Glycoprotein with 10 membrane spanning domains
- Jk\(^a\)/Jk\(^b\) polymorphisms on the 4\(^{th}\) extracellular loop
- Function = urea transport
- Jk(a–b–) individuals are rare
 - are unable to maximally concentrate urine
Kidd Gene and Protein

Kidd System: Phenotypes and Prevalence

<table>
<thead>
<tr>
<th>Reactions with Anti-</th>
<th>Pheno-type</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jk(^a) 0 Jk(^b)</td>
<td>Jk(a+b–)</td>
<td>Whites 28 Blacks 57</td>
</tr>
<tr>
<td>Jk(^a) Jk(^b)</td>
<td>Jk(a+b+)</td>
<td>Whites 49 Blacks 34</td>
</tr>
<tr>
<td>0 Jk(^a)+</td>
<td>Jk(a–b+)</td>
<td>Whites 23 Blacks 9</td>
</tr>
<tr>
<td>0 0</td>
<td>Jk(a–b–)</td>
<td>Exceedingly rare</td>
</tr>
</tbody>
</table>

Adapted from AABB Technical Manual
Kidd Blood Group Antibodies

- IgG; react by IAT and with enzyme-treated cells
- **Always** clinically significant
- Titer drops over time and may be difficult to detect
- Often responsible for delayed hemolytic transfusion reactions
- Partial Jka and Jkb antigens exist putting patients who are apparently antigen-positive patients at risk for making alloantibody
Common vs Uncommonly Encountered Specificities

<table>
<thead>
<tr>
<th>Specificities</th>
<th>Common</th>
<th>Uncommon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh, MNS, Kell, Fy, Jk</td>
<td></td>
<td>Di, Cr, Do, Yt, Lu, Ch/Rg, Kn</td>
</tr>
<tr>
<td>FDA licensed typing reagents available?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>RBCs on commercial panels routinely phenotyped?</td>
<td>Always</td>
<td>Usually not</td>
</tr>
<tr>
<td>Antibody easily identified by hospital BB?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Some other blood group systems

- 010 Diego
- 011 Yt
- 014 Dombrock
- 015 Colton
- 020 Gerbich
- 021 Cromer
Structure and Function of Blood Group Antigens

- Membrane transporters
- Receptors and adhesion molecules
- Complement regulatory glycoproteins
- Structural components
- Enzymes
Antibody Detection: 3-cell screen

<table>
<thead>
<tr>
<th></th>
<th>Rh-hr</th>
<th>Kell</th>
<th>Kidd</th>
<th>Duffy</th>
<th>Lewis</th>
<th>MNSs</th>
<th>P</th>
<th>$37^\circ C$</th>
<th>AHG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>c</td>
<td>e</td>
<td>K</td>
<td>k</td>
<td>Jk^a</td>
<td>Jk^b</td>
</tr>
<tr>
<td>I</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>II</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

Indicates an antibody is present but must test further to identify!
Multiple alloantibodies: points to consider

- What antibodies are identified?
- How many units will I need to screen to find compatible blood?
- Will I find them in my inventory or need to place an order with Blood Center?
Phenotype Prevalence

• Multiply the individual frequencies (incidence of an antigen negative), since phenotypes are independent of one another
• This number will be the % negative for that particular combination
What is the incidence (or phenotype frequency) of c- K- Jk(a-) unit?
c neg = .20
K neg = .91
Jk(a-) = .23

(.20 x .91 x .23 = .04)
Therefore 4% or 4/100 units would be c- K- Jk(a-)

If the question reads, how many units would you need to screen to find 2 antigen neg units for surgery, proceed with a further calculation:

4 = 2
100 x
4x=200 and x = 50
Answer: 50 units need to be screened to find the 2 units ordered
Blood Bank Challenges
Serological Challenges

• Multiple alloantibodies
 – Which phase and by which method do the antibodies react?
 – Selected cell panels
 – Other helpful techniques?

• POS DAT/warm autoantibodies
 – Unable to RBC phenotype
 – Underlying alloantibodies?

• ABO discrepancies

• Delayed transfusion reactions
 – RBC phenotype unreliable
Additional resources

 – by M.E. Reid, C. Lomas-Francis and M.L. Olsson

 – by G. Daniels

AABB Technical Manual
18th edition
Questions?