Hematopoietic Stem Cells: Cell Processing, and Transplantation

Rona Singer Weinberg, PhD Director, Cellular Therapy Laboratory New York Blood Center Phone: (212) 570-3488

E-mail:

rweinberg@nybloodcenter.org

Hematopoietic Hierarchy

LT-HSC: long term hematopoietic

stem cell

ST-HSC: short term hematopoietic

stem cell

GMP: granulocyte-monocyte

precursors

MEP: megakaryocyte-erythrocyte

precursors

NK: natural killer

From: Hematology Basic Principles and Practice, Hoffman, Editor, Chapter 19, page 191

△ New York Blood Center

Hematopoiesis Hierarchy Stem Cells Progenitor Cells Precursors

△ New York Blood Center

Cellular Therapy Laboratory Functions

- Accession HPC products
- Process
- Cryopreserve
- Store
- Distribute
- Outcome
- Quality indicators
- Maintain records 10 years post-infusion

Cellular Therapy Labs are Highly Regulated, FDA

PHS Act Section 361, 21 CFR 1271 HCT/P must meet all 4 criteria:

- 1. Minimally manipulated
- 2. Intended for homologous use only
- Not combined with a device or drug, except for sterilizing, preserving, or storage agents that do not raise clinical safety concerns
- Does not have a systematic effect and is not dependent on metabolic activity of living cells for primary function, or

Has a systematic effect and is dependent on metabolic activity of living cells for primary function and is for: autologous use, or allogeneic use by a first or second degree relative, or reproductive use. PHS Act Section 351, Biological Products, Premarket Approval HCT/P meets any of the following:

- 1. Manipulated altering relevant functional characteristics of cells or tissues
- 2. Genetically modified
- 3. Expanded ex vivo
- 4. Non-homologous use
- 5. Combined with drug, device, or biological product that may raise clinical safety concerns
- 6. Active systemically or dependent on metabolic activity of living cells for primary function <u>unless</u> minimally manipulated for: autologous use, use in first or second degree blood relative or reproductive use.

Cellular Therapy Labs are Highly Regulated

- FDA: Code of Federal Regulations (CFR) Title 23—Food and Drugs, Part 1271 Human Cells Tissues, and Cellular and Tissue Based Products. <u>Minimally manipulated products</u> ("361" products)
- Regulates <u>Good Tissue Practices (GTP)</u> to prevent the transmission of communicable disease
 - Facility Registration: Recovery/collection, screen, test, package, process, store, label, distribute
 - Facility requirement: Clean, uncluttered, ample size, lighting, ventilation, temperature control.
 - Handle products individually to prevent mix-ups
 - Use closed systems when available
 - All supplies must be sterile and appropriate for use
 - Reagents: qualify and release for use
 - Prevent transmission of communicable disease
 - Donors: Infectious disease testing, review health history
 - Products: Microbiology testing

Cellular Therapy Labs are Highly Regulated

- FDA Investigational New Drug (IND)
 - More than minimally manipulated products: cell depletion, ex vivo expansion, donor leukocyte infusions, gene therapy ("351" products)
- States: Example NYS DOH
 - Licensure of Cellular Therapy/Stem Cell Labs
 - Qualifications for Director, Medical Director
 - Donor infectious disease testing requirements
 - Laboratory requirements
 - Collection to processing time requirements
- Accreditation
 - FACT
 - AABB

Hematopoietic Progenitor Cell (HPC) Products

- •Volume: 1000-1500 mL
- •Hct: 20-30%
- 10-15 mL of marrow/Kg of recipient body weight
- Donor CBC predictive of cellular yield of product
- TNC: 2-6 fold higher than PB TNC
- Granulocytes and lymphocytes predominate
- CD 34+ cells ~ 1 log lower than in mobilized HPC, apheresis products

HPC, Apheresis

- •Volume: 300-600 mL
- •Hct: <5%
- Most common
- Ease of collection
- Circulating CD 34+ cell count correlates with HPC, apheresis yield
- TNC of HPC, apheresis is 10 X HPC, marrow, 2X un-stimulated blood
- Lymphocytes 40-50%
- Granulocytes 30-50%
- G-CSF mobilization yields 10 to 20 fold higher CD 34+ cells than marrow and 40-50 fold higher then unstimulated blood

HPC, Cord Blood

- Major limitation: cell dose
- Unrelated CB dose
 >3.7 X 10⁷/Kg predicts
 higher probability of
 myeloid engraftment
- Availability—public banks
- ~ 30% collected enter inventory
- Discard: donor deferrals, low volume, low cell counts, microbial contamination

Unique Processing Considerations

Bone Marrow	Peripheral Blood	Cord Blood
Large volume, > 1000 mL	Volume 300-600. Plasma reduction: reduce volume, minor ABO incompatibility	Small collection volume, 75- 150 mL
Bone spicules, fat, clots, anticoagulants	Plasma removal to provide plasma for processing procedures	Small number of cells. Engraftment correlated with cell dosage Care to prevent cell loss
Filtration may be necessary during collection or prior to processing	Multiple collections large volumes of anticoagulants (DMSO)	Plasma removal
Sedimentation to remove fat	Hct ≤ 5%, ABO incompatibility, Remove RBC???	Unknown recipient, question of ABO incompatibility, remove RBC
Hct: 20-30%, ABO incompatibility Remove RBC		Long term storage, possibly 15 or more years
Washing to remove large volume of anticoagulants, pediatric patients		

▲ New York Blood Center

HPC Product Quality

- Establish parameters/indicators to evaluate quality of product at each step of production/manufacture
- Donor status: healthy normal or patient following chemo
- Mobilization: G-CSF, chemo + G-CSF, AMD 3100 (mozobil, plerixafor)
- Collection procedure: Marrow vs apheresis
 - volume, sterility
- Processing: aseptic technique, clinical grade reagents, sterile materials, skill
- Cryopreservation: freezing rate, cryoprotectant
- Storage temperature:
 - liquid or vapor LN2, mechanical freezers
- Thawing: temperature, time from thawing to infusion
- Infusion: adverse events
- Engraftment

Accessioning HPC products

- Visual inspection
- Condition of container
 - Color of product
 - Free of contamination
 - Labeling
 - Volume/weight
- Review of transport conditions and records
 - Temperature maintained appropriately
 - Chain of custody

Processing HPC Products: Minimal Manipulation ABO/Rh Incompatibility

•Minor

- Donor alloantibodies in plasma against red cells in recipient's circulation
- Example: O donor, A or B or AB recipient, product plasma antibodies react against recipient RBCs
- Donor antibody titer used to determine need for plasma reduction
- Plasma depletion reduces level of donor alloantibodies

Major

- Recipient has circulating alloantibodies to antigens on donor's RBCs
- Red cell depletion of product
- Patient immunosuppression may prevent reaction with infused RBCs

Processing HPC Products: Minimal Manipulation RBC Depletion

Manual

- Hydroxyethyl starch (HES, hespan, ~ 20% product volume) facilitates sedimentation
- Sediment by gravity or centrifugation
- RBC removal 99% in 1-3 hrs
- Desirable HPCs also sediment
 - Cannot eliminate all RBCs without loss of HPC
 - HPC loss can be significant MNC recovery about 75%

Automated

- COBE 2991 cell washing devise
- Buffy coat collected into a collection bag
- •60-85% MNC recovery; <20 ml of RBC remain
- ·Good de-bulking large volumes, large number RBCs remain
- May require additional manual RBC depletion

Processing HPC Products: Minimal Manipulation Plasma Reduction

- HPC, apheresis products similar to blood bank products, similar techniques adapted
 - Simple centrifugation method of choice
- Automated e.g., Cobe 2991 can be employed
- Reduces final volume of product
 - Pediatric recipients
 - Reduces amount of cryoprotectant
- Reduces plasma antibodies
 - ABO incompatibility

Cryopreservation

- Handling prior to cryopreservation influences survival
 - Liquid storage: optimize to maintain viability: time, temperature, duration
 - RBC and plasma concentrations and depletions
 - ·Ex vivo culture
 - Cell enrichments
- Cryopreservation media
 - ·Balanced salt solution (or culture media),
 - Cryoprotective agents: dimethyl sulfoxide (DMSO), glycerol

Cryopreservation

DMSO

- Alters fluidity and permeability of the cell membrane
- Influences biological cell and water within the cell
- Hypotonic: Addition \rightarrow efflux of water from cell, can \rightarrow cell lysis
- Equilibration occurs
- Thawing + transfer to isotonic solution → influx of water → lysis
- Cold temperatures reduce lysis
- Pre-freeze and post-thaw exposure should be limited
- Freezing within 15 minutes of adding
- Care during thawing
- Infusion immediately post-thawing
- Limit infusion dose to < 1 gm/Kg/24 hours to reduce adverse reactions. 1mL DMSO = 1 gm DMSO.

Cryopreservation

- Cooling rate strongly influences post-thaw survival
- Cooling rate of -1 to -2 degrees Celsius optimal
- "Passive freezing" vs. controlled rate freezing
- Ice formation occurs in extracellular solution
 - Pulls out water
 - Raises temperature
- Lower the temp at which extracellular solution freezes the more intracellular ice formation and decrease in post-thaw viability
- Controlled rate freezers have a warming phase to "seed" freezing at a specific temp

Thawing

- Thaw at bedside for rapid infusion
- Removal of DMSO
 - Thaw must be in lab
 - Manual vs. Automated (Cobe 2991)
 - Centrifugation and removal of supernatant
 - Add fresh wash solution such as dextran/albumin solutions time consuming
 - Labor intensive
 - Significant cell loss due to physical stress and osmotic stress of added wash solutions

Assessment of HPC Product Quality: Surrogate Markers

- TNC and MNC: Suggested effective doses vary widely:
 - TNC: 0.1 to 1 X 10 4 /Kg
 - MNC: 1-3 x 10⁸ /Kg
- CD 34+ cell enumeration: monoclonal antibodies and flow cytometry
 - 2 X 10 ⁶/Kg for engraftment within 14 to 21 days w/out growth factor support
- Colony assay
 - 14 day CFU-GM
 - Limited utility because of time to know answer
- Viability
 - Trypan blue
 - Flow cytometry: 7 AAD

Assessment of HPC Product Quality

- Viability
 - Trypan blue exclusion:
 - Vital dye: enters cells if membrane damaged
 - Negative cells = viable,
 - Positive cells = dead.
 - Non-specific: Stem cells < 1% of cells →inaccurate
 - 7AAD flow cytometry 7-amino-actinomycin D
 - excluded by viable cells.
 - Gating on CD 34+ cells+ 7AAD → viable CD 34+ cells
 - Microbial evaluation
 - Thioglycollate
 - 14 day, infusion may occur before results available
 - Automated: BacT and Versa Trek
 - Quick, must be validated with challenge experiments

Storage

- Liquid
 - Short term
 - Pre-processing and Post-Thaw
 - Ambient temperature
 - Refrigeration: 2-8 ° C
- Cryopreserved
 - LN2 vapor: -130° to -196° C
 - LN2 liquid: -196° C
 - Mechanical freezers: -130° C

Cellular Therapy Laboratory Functions: Distribution

- Labeling
 - Recipient
 - Product name
 - Unique identifiers
 - Unique product number, MR #, DOB
 - Additives
 - Date
 - Storage temperature
- Donor Qualification
 - Donor health history
 - Infectious disease testing: HIV, Hepatitis A, B, C, WNV, HTLV I/II, Syph, CMV
 - Biohazard labels
- Transportation
 - Temperature
 - Chain of custody

Cellular Therapy Laboratory Functions: Outcome

Outcome

- Adverse events
 - Minor: nausea, vomiting
 - Major: hypertension, tachycardia, LFTs, breathing
 - Must be investigated
 - May be reportable: FDA, state
- Engraftment
 - Gold standard for quality

More than Minimally Manipulated: CD 34+ Cell Enrichment/T Cell Depletion

- Goal
 - Remove GVHD causing T cells
 - Preserve GVT causing T cells
- Immunomagnetic separation
 - Select CD 34+ cells
 - Removes cells that are not CD 34+
 - Non-specific
 - GVHD vs GVT T-cells
 - Engraftment enhancing cells (stroma, endothelial cells)
 - Select T cells, subsets
 - Challenges: identifying target population
 - Possible selections: CD3, CD4, CD8, CD 56

More than Minimally Manipulated: CD 34+ Cell Enrichment/T Cell Depletion

- Advantages:
 - Most HSCs CD34+, c-kit+, thy1+, CD38-
 - Effective dose = 1 to 5 X 10 ⁶ cells/Kg
 - Higher doses result in faster engraftment
 - Long-term engraftment (> 10 years)
 - May eliminate tumor cells in autologous grafts
 - Eliminates lymphocytes→ ↓ GVHD
 - Haploidentical transplants
- Concerns:
 - Some HSCs may be CD34 neg, Hoechst-33342+
 - Eliminates lymphocytes → ↓ GVT , ID risk, graft failure

CD 34+ cell selection: Methods

- CliniMACS™
 - Anti-CD34 nanoparticles
 - Biocompatible nanoparticles remain on HPC
 - FDA approved for humanitarian use for AML
 - Regulatory approval in Europe

Hematopoietic Stem Cells

More than Minimally Manipulated: Graft Engineering

- Donor Leukocyte Infusion (DLI)
 - Anti-tumor effect
 - Leukemia, lymphoma, Hodgkin lymphoma, multiple myeloma
 - Unmodified donor lymphocytes
 - High risk of GVHD
- Natural Killer Cells
 - CD 56+ cell selection or CD 3+ cell depletion
- Genetic Engineering
 - T cells: T Cell Receptor (TCR), Chimeric Antigen Receptor (CAR-T cells)

More than Minimally Manipulated: Ex-Vivo Expansion

- Rationale
 - Increase HPC for transplant
 - •HPC, apheresis: fewer collections, smaller volume, "poor mobilizers"
 - •HPC, cord blood: small collections, larger donors, shorten time to engraftment
 - Allogeneic: shorten time to engraftment
- Method
 - HPCs +hematopoietic growth factors, cytokines, drugs
 - Infuse before, with, or after non-expanded portion or other HPC product
- Concerns
 - Failure to engraft

Summary

- Cellular Therapy Labs "manufacture" HPC products
- Labs are highly regulated: FDA, NYDOH, FACT, AABB
 - FDA: "361" products, minimally manipulated, 21 CFR 1271
 - RBC depletion
 - Plasma depletion
 - FDA" "351" products, more than minimally manipulated, IND
 - CD 34+ cell enrichment
 - T-cell depletion
 - Donor lymphocyte infusion

Summary

Many factors influence the quality of the final product

- Collection
- Handling (temp, transport)
- Processing methods
- Cryopreservation methods
- Thawing
- Quality: purity and potency must be evaluated
 - TNC
 - CD34+ cells
 - Viability
 - Adverse events
 - Gold standard = engraftment