Public Cord Blood Banking and unrelated Transplantation
National Cord Blood Program

A. Scaradavou, MD
Medical Director, National Cord Blood Program, New York Blood Center
Cord Blood in hematopoietic stem cell transplantation

- The blood remaining in the placenta and umbilical cord after the birth of baby is rich in hematopoietic stem cells.
- This blood can be harvested easily, with no risk to the mother or baby.

Advantages of CB in transplantation

- Easy access – large numbers of donors – ethnic diversity
- Can be collected and stored (cryopreserved) in CB Banks
- Available upon demand – no delays in transplants
- Lower risk of viral infections
- Immunologically “naïve” T cells: do not need “perfect” match

Considerations

- Cell dose (volume)
- Transmission of (unknown) diseases
Public CB Banking at the National Cord Blood Program (NCBP)
Cord Blood Collection

- Ex utero collection
- Trained collection personnel
- TNC count at collection - Identification of clinical units
- Maternal Consent - sample - Questionnaire - Records
- Transportation to the Bank - temperature monitoring

Time from collection to completion of processing: maximum 36 hours
What is a “bankable” CBU

- “Adequate” TNC (volume): above Bank’s “cut-off”
- Not Clotted
- Maternal informed consent – medical information
- No Contamination with Bacteria/Fungi
- No Contamination with Mother’s Blood
- Processed within 36 hours* from collection
- Adequate / Viable Hematopoietic Progenitor Cells
- Complete infectious disease testing

*FACT requires maximum of 48 hrs from collection
The “life cycle” of a CBU

Permission to collect - review medical record

Harvest CB

TNC

Total Nucleated Cell count at collection

Label CBU - Clinical - Informed consent – maternal questionnaire

Processing - Cryopreservation - Freezing

Testing: Potency, IDMs, eligibility, HLA, other

QA Review: CBU Release to Search (status)

Review for patient: TNC/match HLA CT from segment

CBU Release for Transplant

Research CBU
No identifiers
No further tests
Cord Blood Processing

AXP: Automated Processing System

- Partial RBC depletion and volume reduction
- Closed manufacturing system; Aseptic processing
- Accurate final product volume; Consistent, low hematocrit
- High recovery of mononuclear and CD34+ cells; excellent viability
Cord Blood freezing and storage

Two-compartment Cryopreservation Bag; total volume: 25 mL
HPC-C cryoprotected in DMSO; final DMSO concentration: 10%

Segments: identity and potency testing post-cryopreservation
1: HLA Confirmatory Typing; 2: CD34+ count/viability, CFU testing
3: retention sample (FDA)
Cord Blood cryopreservation and storage

BioArchive freezer

Individual CBU:
- controlled rate freezing (CRF)
- long-term storage in liquid nitrogen in the same freezer
- reduced transient warming events
- automated retrieval

Standardization:
- highly reproducible cryopreservation profiles
- computerized system

Capacity: 3600 HPC-C products
Cord Blood Testing

- Maternal blood sample: donor ID screening including NAT for HIV/HCV/HBV and WNV, and testing for CMV
- CB: CBC, CD45+/CD34+ cells and viability, CFU assays
- CB: ABO, Rh, SS hemoglobin (HPLC); molecular Hb testing as needed
- CB: Bacteriology (bacterial, fungal, aerobic, anaerobic)
- CB: Testing for relevant genetic diseases can be performed prior to transplant
- HLA typing (class I, II performed at the DNA level)
Evaluation of HPC-C Potency by a standardized high throughput CFU strategy using High-Resolution Digital Imaging

Unstained image

Stained image

Documentation
Testing date/time
CBU ID - sample
Dish ID
Operator
Hood

Advantages
Standardized assay
High numbers (30 CBUs/day)
Stain: enhances detection
Stored digital images

○ = CFU-GM
○○ = BFU-E
□ = CFU-mixed
Standardization of CFU potency assay

CFU ASSAY: LIMS and HRDI-ACC APPROACH
Potency: CFU counts and vCD34+ cells

N=11,587 CBU, post-processing samples

\[R^2 = 0.76 \]
\[Y = 1.4x + 0.86 \]
Cord Blood Shipping - Transportation

Shipping container

- CryoShipper Lid
- CB Unit
- < -150°C for 5-7 days

Continuous temperature monitoring during transportation

- MVE Data logger

-190°C
Access to the NCBP CB Inventory

NCBP’s Web portal: WebSearch

Registries:

• Single Point of Access – NMDP
• Bone Marrow Donors Worldwide
NCBP HPC, Cord Blood: final product

Highly regulated stem cell source
Accreditations: FACT or AABB
FDA Regulations (Public CB Banks)
HEMACORD November 2011
Stability studies of CB products:

a) Does the “time in storage” affect potency or engraftment ability

b) Is there an expiration date for the products?
Stability Evaluation of CB products

<table>
<thead>
<tr>
<th>Test</th>
<th>Purpose</th>
<th>Stability-Indicating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Inspection of product after thawing</td>
<td>Determine Integrity of container and closures and Identity Label</td>
<td>Integrity, Identity</td>
</tr>
<tr>
<td>Total nucleated cell (TNC) count</td>
<td>Measuring TNC content</td>
<td>Potency</td>
</tr>
<tr>
<td>Viable CD34+ cell content (CBU segment and Bag)</td>
<td>Measuring CD34+ cell number and viability</td>
<td>Potency</td>
</tr>
<tr>
<td>Colony-Forming Units (CFU) (CBU segment and Bag)</td>
<td>Counting colonies of functional progenitor cells</td>
<td>Potency</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Detection of microbial contamination</td>
<td>Integrity, Purity, Safety</td>
</tr>
</tbody>
</table>

Clinical CBU from all 4 NCBP manufacturing periods are used

Stability studies: CB Product Expiration Date

Each Year, Expiration Date Extends
Manufacturing

PRODUCT NAME

Example: Labeling/Expiration date

NEW CONTAINER LABEL
APPLIED AT SHIPMENT

EXPIRATION DATE

“PARTIAL” LABEL
PRINTED AT SHIPMENT

HEMATOPOIETIC PROGENITOR CELLS, CORD BLOOD
HEMACORD
Injectable Suspension

HEMACORD ID: 123456P
RECIPIENT: Last, First
SEARCH ID: 11111
TNC/kg: 2.3 x 10^7

HLA match with recipient: one B locus mismatch
(One B locus mismatch is assigned considering low-resolution typing for HLA class I and B loci, and high-resolution typing for HLA DRB1 alleles.)

For Intravenous Administration Only
Do Not Irradiate
Rx only

Cryopreservation (concentration): DMSO (10%) / Dextran 40 (1%)
Volume: Approx. 25 mL
Storage: ≤ -150°C
CBU segment analysis for evaluation of CBU quality/potency post-cryopreservation

AXP CBU Attached Segments
1: HLA Confirmatory Typing
2: CD34+ count/viability;
 CD45+ count/viability;
 CFU testing
3: retention sample
NCBP CBU: segment CD34+ cell viability
N=1924 segments; N=1494 AXP CBU

CBU Processing method: AXP (automated)
Freezing - Storage: BioArchive freezers
Manufacturing Period: 2006 - 2016
Testing prior to CBU release for transplant

Scaradavou et al, ASH 2016
Segment CD34+ and CD45+ cell viabilities
NCBP CBU: segment CD34+ cell viability

N=684 segments; N=673 CBU (non-AXP)

mean 94.2
median 95.4
SD 4.3

Storage % CD34+ cell viability

CBU Processing method: manual
Freezing - Storage: BioArchive freezers (since 1999)
Testing at time of CBU HLA CT (recent)

Scaradavou et al, ASH 2016

Storage Time (yrs)
mean 10.6
median 10.0
min 6.3
max 21.0
CB graft-related variables that affect engraftment, survival and relapse
Unrelated Donor Searches: Results based on patient Ancestry

CB extends transplant access to patients of ethnic “minorities”

Data from Memorial Sloan-Kettering Cancer Center

Barker et al, BBMT 2010; 16(11):1541-1548
Time to engraftment

TNC/kg is the most significant variable affecting engraftment

Eligible for analysis: N=562; single unit grafts; Diagnoses: all; Transplant Centers: all (domestic/international); Tx period: 1992-1998

Rubinstein et al, NEJM 1998; 339:1565-77
Eligible for analysis: N=1202; single unit grafts; Diagnoses: all; Transplant Centers: domestic; Tx period: 1993-2006

Stevens et al, Blood 2011; 118:3969-78
Time to engraftment

Neutrophil Engraftment: Effect of TNC and HLA

Cox Regression

<table>
<thead>
<tr>
<th>CI of Neutrophil Engraftment</th>
<th>Days Post-Transplant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 MM: all TNC, (mean 4.4)</td>
<td></td>
</tr>
<tr>
<td>1-2 MM, TNC ≥10.0</td>
<td></td>
</tr>
<tr>
<td>1-2 MM TNC 5.0-9.9</td>
<td></td>
</tr>
<tr>
<td>1-2 MM TNC 2.5-4.9</td>
<td></td>
</tr>
<tr>
<td>3 MM: all TNC (mean 3.7)</td>
<td></td>
</tr>
<tr>
<td>1-2 MM, TNC < 2.5</td>
<td></td>
</tr>
</tbody>
</table>

Higher TNC may improve engraftment of HLA MM units

Eligible for analysis: N=1061; single unit grafts; Diagnoses: hematologic malignancies; Transplant Centers: all (domestic/international); Tx period: 1993-2006

Barker et al, Blood 2010; 115: 1843-1849
Post-thaw CD34+ cell viability as indicator of CBU potency

Post-thaw CD34+, CD3+ and CD45+ cell viability and unit engraftment in 44 double unit CB grafts

Modified ISHAGE gating strategy for assessment of post-thaw cell viability

Scaradavou et al, BBMT 2010; 16: 500-508
Time to ANC engraftment by infused viable CD34+ cell dose

Infused viable CD34+ cell dose: critical determinant of neutrophil engraftment

Purtill et al, Blood 2014; 124: 2905-12
Number of HLA MM and post-transplant events

0 MM grafts appear to have the best outcomes

Eligible for analysis: N=562; single unit grafts; Diagnoses: all; Transplant Centers: all (domestic/international); Tx period: 1992-1998

Rubinstein et al, NEJM 1998; 339:1565-77
CIBMTR study: effect of allele level match on Non-Relapse Mortality and Overall Survival after single unit CB transplants

Eligible for analysis: N=1568; single unit grafts; Diagnoses: hematologic malignancies; Conditioning: myeloablative; Transplant Centers: all; Tx period: 2000-2010

Eapen et al, Blood 2014; 123: 133-140
The **IPA/NIMA** effects during pregnancy

NIMA
- non inherited maternal antigens

NIPA
- non inherited paternal antigens

IMA
- inherited maternal antigens

IPA
- inherited paternal antigens

Transplacental trafficking:

The fetus gets exposed and develops immunity and T regulatory cells against the NIMA.

Maternal microchimerism:

The mother gets exposed, and develops B and T cell immunity against the IPA of the fetus.

Exposure to NIMA/IPA has implications when CB is used for transplant
CB unit selection for transplant: Steps

1. **Search for domestic and international CBU**

2. **“Screen” CBU by TNC**: Establish a TNC dose “threshold” depending on graft (single / combined / other sources / expansion)
 - **minimum**: 2-3 x10^7/kg for single CBU
 - 1.5-2 x10^7/kg for each of the CBU in a double graft

3. **For CBU above the “threshold” TNC dose:**
 - **evaluate HLA match level** (at 6 and 8 alleles preferably):
 - If fully matched CBU: best choice (CBU quality needs to be considered)
 - avoid CBU with < 3/8 allele match, if possible
 - consider “permissible” mismatches for hematologic malignancies (unidirectional HLA MM, maternal HLA phenotype for NIMA/IPA assignments)
 - do not limit selection based on unit-unit match
 - **evaluate potency assays**, if available; presence of CBU segment
 - **evaluate CB Bank of origin**; overall quality of products
 - **consider other patient-related variables** (DSA, RBCs, CBU volume)

4. **Identify CBU for the graft and back-up**
National Cord Blood Program

- Collections - Rodica Ciubotariu, MD, PhD
- Quality Control - Susana Albano, PhD
- IT Systems - Michal Tarnawski, MD
- Manufacturing - Ludy Dobrila, PhD
- Validations – Connie Cheung
- Medical Director - Andromachi Scaradavou, MD
- Program Director - Pablo Rubinstein, MD

- QRA: Betsy Jett, VP QRA
 - NYBC QRA staff assigned to NCBP